459 research outputs found

    A convective instability mechanism for quasistatic crack branching in a hydrogel

    Full text link
    Experiments on quasistatic crack propagation in gelatin hydrogels reveal a new branching instability triggered by wetting the tip opening with a drop of aqueous solvent less viscous than the bulk one. We show that the emergence of unstable branches results from a balance between the rate of secondary crack growth and the rate of advection away from a non-linear elastic region of size G/E\mathcal G/E where G\mathcal G is the fracture energy and EE the small strain Young modulus. We build a minimal, predictive model that combines mechanical characteristics of this mesoscopic region and physical features of the process zone. It accounts for the details of the stability diagram and lends support to the idea that non-linear elasticity plays a critical role in crack front instabilities

    Rheological aging and rejuvenation in solid friction contacts

    Full text link
    We study the low-velocity (0.1--100 μ\mum.s−1^{-1}) frictional properties of interfaces between a rough glassy polymers and smooth silanized glass, a configuration which gives direct access to the rheology of the adhesive joints in which shear localizes. We show that these joints exhibit the full phenomenology expected for confined quasi 2D soft glasses: they strengthen logarithmically when aging at rest, and weaken (rejuvenate) when sliding. Rejuvenation is found to saturate at large velocities. Moreover, aging at rest is shown to be strongly accelerated when waiting under finite stress below the static threshold

    From thermally activated to viscosity controlled fracture of biopolymer hydrogels

    Full text link
    We report on rate-dependent fracture energy measurements over three decades of steady crack velocities in alginate and gelatin hydrogels. We evidence that, irrespective of gel thermo-reversibility, thermally activated "unzipping" of the non-covalent cross-link zones results in slow crack propagation, prevaling against the toughening effect of viscous solvent drag during chain pull-out, which becomes efficient above a few mm.s−1^{-1}. We extend a previous model [Baumberger {\it et al.} Nature Materials, {\bf 5}, 552 (2006)] to account for both mechanisms, and estimate the microscopic unzipping rates

    Interplay between shear loading and structural aging in a physical gel

    Full text link
    We show that the aging of the mechanical relaxation of a gelatin gel exhibits the same scaling phenomenology as polymer and colloidal glasses. Besides, gelatin is known to exhibit logarithmic structural aging (stiffening). We find that stress accelerates this process. However, this effect is definitely irreducible to a mere age shift with respect to natural aging. We suggest that it is interpretable in terms of elastically-aided elementary (coil→\tohelix) local events whose dynamics gradually slows down as aging increases geometric frustration

    Fracture of a biopolymer gel as a viscoplastic disentanglement process

    Full text link
    We present an extensive experimental study of mode-I, steady, slow crack dynamics in gelatin gels. Taking advantage of the sensitivity of the elastic stiffness to gel composition and history we confirm and extend the model for fracture of physical hydrogels which we proposed in a previous paper (Nature Materials, doi:10.1038/nmat1666 (2006)), which attributes decohesion to the viscoplastic pull-out of the network-constituting chains. So, we propose that, in contrast with chemically cross-linked ones, reversible gels fracture without chain scission

    Self healing slip pulses along a gel/glass interface

    Full text link
    We present an experimental evidence of self-healing shear cracks at a gel/glass interface. This system exhibits two dynamical regimes depending on the driving velocity : steady sliding at high velocity (> Vc = 100-125 \mu m/s), caracterized by a shear-thinning rheology, and periodic stick-slip dynamics at low velocity. In this last regime, slip occurs by propagation of pulses that restick via a ``healing instability'' occuring when the local sliding velocity reaches the macroscopic transition velocity Vc. At driving velocities close below Vc, the system exhibits complex spatio-temporal behavior.Comment: 4 pages, 6 figure
    • …
    corecore